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Preface

This report is a collection of material that has been used
in courses on search, detection and localization modeling. Its
organization follows to some extert mater1a1 by S. M. Pollock in
_g;pc ed Methods and s Operations Research which
is listed in the report blbllography The report is not intended
to be a text on these subjects. In particular, in some areas it
does not provide the depth of coverage that is found in the book
Search and Detection by Alan R. Washburn which is cited in this
report as Reference 22.

Iin the second revision, some typographical and other errors
have been corrected and some changes have been made to several
sections of the report.
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I. Detection Models and Signal Detection Theory

Signal detection theory is the basis for analyzing the
detection models that are described in this report. 1In signal
detection theory, the decision making portion of a detection
system is called the receiver and a detection experiment is the
observation by a receiver of input data generated during some
time interval. The data that is related to a target is called
signal. The data that is not related to the target is called
noise. In general, the target data is associated with a
localization region that in some cases is called a resolution

cell. When a detection experiment is performed, either the event

Hg {the receiver input is noise} or its compiement

H; = (the receiver input is signal and noise) will cccur. 1In
the first detection models that are described here, after
analysis of the input data by a receiver, either the event

Dg ={the receiver decides the input is noise} or its complement

Dy

{the receiver decides the input is signal and noise} will
occur. Detection models for which Dj is the complement of Dy
are called Linary detection models or forced choice detection
models. Four events which are important in binary detection
models are indicated in the Venn diagram of Figure 1.

The Venn diagram emphasizes a decision problem that is
associated with a receiver that can be modeled using a binary
detection nodel. The problem is this: Under what conditions
should the event D; occur? That is, under what conditions
should a receiver decide that the input data indicates a tavrget

1
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was present in an observed localization region either at the time

or prior to the time of the observation?

Hg H,y
Dg Dg N HU Dg 0 Hl
Dl Dl n HO Dl n Hl

Figure 1. Four events of importance in binary detection models.

In the detection model descriptions that follow, the
following notation and terminology are used: pg = P(Dy|Hy), the
probability of D, given Hp, is called the false alarm
probability; pq = P(D;|H;), the probability cf D; given H;,
is called the detection probability and P = P(Hy), the
probability of H,;, is called the prior probability. It is the
probability that a target will be in the localization region when
the input data is generated.

In the detection models, the input to a receiver is
determined by a stochastic process that has the following
characteristics: It is a random noise process when there is no
target data and it is a random ncise process plus a signal
process when there is target data. Although the receiver input
process in some cas2s might appear to be determined by a
continuous parameter stochastic process, because of the finite

2



amount of information (unique data) contained in a bounded
sequence of finite length, a discrete parameter stochastic
process is sufficient to d=termine the receiver input in these
cases. This is establishea formally by the stochastic sampling
theorem. Consegquently, in these models, the input to a receiver
is determined by a sequence of random variables Y3, -+ ,Yn and
an observation yields a sequence of values Yj;,...Y¥Ypn-

Three detection models are described in Section III. 1In the
first model, the signal process is a deterministic process. 1In
the second and third, the signal process is a random process. ToO
cdefine a random noise process or a ranrcom signal process, only
the joint distribution of the finite sequence of random variables
that determine the process needs to be specified. If the signal
process is a deterministic process. the signal values can be
determined before an observation is performed. To define the

process in this case, only these values need to be specified.




II. Decision Criteria

To simplify the discussion of decision criteria and
decision rules, a receiver's input will be assumed to be
determined by a single decision random variable Y. In this
case, the input process in determined by the conditional
distribution function Fy(ylﬂo) when the input is noise alone
and by the conditional distribution function Fy(ylﬂl) when the
input is signal plus noise.

The condition that a receiver's input is required to
satisfy in order that the event D; will occur can be specified
in terms of a decision rule. For the ussumed case, a decision
rule is a rule which determines for every observable value of Y
the decision that the receiver is to make. The decision rule can
be considered to be a function ¢(y) which relates each
observable value y (o one or ithe other of the following two
commands: dg = "decide that the receiver input was noise" and
d; = "decicde that the receiver input was signal and noise".
Choosing a decision rule ¢(y) defines a set 0 of observable
values of Y such that the event D; = { Y € 2 ).

The problem which was considered in Section I can now be
restated in the following way: What criterion should be adopted
in order to determine a decision rule or, equivalently, its
corresponding set 1 ? A desirable characteristic for a criterion
is suggested by the following argument: Consider the odds in

favor of H; given y is observed. That is, consider




P(H1lY = y)/P(HplY = y). One might expect that y would be a
member of the set O if and only if y made this ratio equal to
or greater than some value k. But this is equivalent to defining
1 as follows: 1= {( y : L(y) 2 K ) where L(y) is the
lixelihood ratio associataed with an observed value y and K is
a constant related to the constant k. This suggests that
choosing an optimum criterion is equivalent to choosing an
optimum value for K. Four specific decision criteria are defined
next iun terms of X. For each criterion, has the above
form. But for each criterion the choice of K is different.

The decision criteria are:

1. The Neyman-Pearson Criterion: Choose i so that pg
is a maximum subject to the constraint that pg < a where a is
a specified value. For a continuous decision random variable,
the constant K 1is chosen so that p¢ = a.

2. The Bayes Criterion: Choose 0 so that the expected
cost of a receiver's decision is a minimum. For a continuous
decision random variable, K = [(¢jg-cgg)/(cg1~-C11))1°(1-P)/P if
€10 > oo and ¢cg; > ¢33 where cj4y 1is the cost of Dj n Hy.

3. The Ideal Observer Craiterion: Choose 0 so that the
probability that the receiver makes an incorrect decision is a
minimum. K = (1-P)/P for a continuous decision random variable.

4. The Minimax Criterion: Choose 1 when P is unknown so
that the maximum expected cost of a receiver's decision is a

rinimum. If c¢39 > ¢gg and cp; > ¢33, then

a _gen




K = {(C19~Cog)/(Co1-c11)1* (1-P*)/P* for a continuous decision
random variable. Here, P" is the value of the prior probability
P that would make the expected cost of a receiver's decision a
maximum if P were Kknown and the Baves Critericn were used.

If a model which specifies the conditional distvributions
Fy(ylﬂo) and Fy(Y|H1) and a decision rule are adopted, then
the value of pgf and the value of pg are determined. This
pair of values (pf,pq) 1s called a receiver cperating point.
If the decision rule results from using a likelihood ratio
criterion such as one of the four listed abeve, then it will
involve the parameter K since 0 = {y: L(y) 2 K). And, for a
given valuve of K, since 1 uniquely determines the pair
(P£.Pg), @ single operating point results. By varying K, a set
of operating points can be generated which determines a receiver
operating characterisiic curve or RCC curve., Different ROC
curves can be produced by changing either one or khoth of the
conditional disc.ributicns which implies either a change in the
signal process or a change in the noise process.

2 decision rule which results from using a likelihood ratio
criterion in a model in which the input process is determined by
a set of m random variabkles can be expressed in terms of a set
1 as follews: & = ( (Y1, *<° .Ym) ¢ L{(y1, *-° ,¥p) 2 K } vwhere

K is specified in the same way that it is when m = 1.




1I1XI. Three Binary Detection Models

Three detection models are examined in this section.
I'or the first two detection models, the input stochastic process
for an observation is defined by a time sequence of continuous
random variables. The random variecbles represent a sample from a
continuous parameter stcchastic process which is sampled at times
such that the random variables are independent. For the third
detection model, the input stochastic process is a counting
process and it is defined by a single discrete random variable
that is egual to the number ol events that are counted during the
observation.

Model I: 1In the first detection model, a sampled noise
value is a value of a normally distributed random variable with
mean zerc and with known variance o'. And a sampled signal
value is a known value of a deterministic variable. Thus, the
input process corresponding to an observation consists of some
number m of independent normal random variables Y;, <++ ,Yq,
each with variance o¢'. And, for i = 1,2, --¢ ,m, when a signal
is not present the mean of VY; 1is zero and when a signal is
present the mean is sj. The result of using a likelihood ratio
decision rule in the model can be expressed in terms of a random
variable 2. This random variable is called a crosscorrelation
statistic and it is defined by 2 = X sj+Yj; where the sum index
1 =1,2, **+ ,m here and in the remainder of this sectijon.
However, it is more convenient to express the result in terms of

a statistic V which is defined by V = 2/0,. 1In terms of this

Rt ant i 8
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random variable, the conditional probabilities py and pgq are
given by: pg =1 - &(v*¥) and pg=1 - & (v* - d*) where ¢
symbolizes the standard normal cumulative distribution function,
v* = (1/0,)+(0%ln K + (1/2) T s}), is determined by the decision
rule and d = % s;/c’ iz called the detection index.

Often, the input stochastic process represents a quantity
whose square is proportional to power. In such a case, the
average receiver input power is the random variable T Yi/m. If
a sigral is not present, the expected average receiver input
power is N = % ¢”/m = ¢ where N 1is called the noise. The
ave:'age rec2iver input signal power is S = I s;/m where § is
called the signal. In these terms, d = m+(S/N) where S/N is
cailed *he signal-to-noise ratio.

If a receiver's input can be considered to be a time
seguerce of continuous voltage values such as in the case of a
sonar receiver, in some cases a frequency representation can be
used that invclives the concept of receiver bandwidth. In these
cases, the noise process is assumed to be such that m = t/ét
where t 1is the integration time (the duration of an
obvervation; and &t is the tine between samples with
8t = 1/(2(BW)] where bBW 1is the bandwidth and &t 1is
determined by the sampling theorem. This implies that the
d:avection index can be written as 4 = 2t- (BW)+(S/N). By
defining Ny as the power spectrel density where Ng = N/BW  the

detectzion index can also be written as ~ 2t«(S/Ng).
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In Reference 2, the conditions required by the first model
are called Case I and in the following sections the first model
is called the Case I model. A receiver that processes data
such that it would implement a likelihood ratio decision rule
under the conditions of the first model is called a matched
tilter or crosscorrelation detector. If the description of the
input noise is adequate, a Case I model can be used to obtain an
estimete of an upper bound on a detection system's performance,
since all the information necessary to define the signal is
assumed to be known.

Model IX: 1In the second detection model, a sampled noise
value is a value of an independent normal random variable with
mean zero and with known variance o¢'. And a sampled signal
value is an independent random variable with mean zero and with
known variance o2. Thus, the input process corresponding to an
observation consists of some number m of independent normal

random

variables Yq,°+++,¥, each with mean zero and each with variance

o* when a signal is not present and with variance o¢® + ¢l when

a signal is present. The result of applying a likelihcod ratio
decision rule in this model can be expressed in terms of a
statistic X which is defined by X = T Y{. When a signal is
not present, the statistic X/N has a chi-sgquare distribution
with m degrees of freedom. When a signal is present, the
statistic X/(N+S) has a chi-square distribution with m

degrees of freedom. So, in terms of these statistics, the
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conditional probabilities pgy and pg are defined as follows:
pr= P(Xg 2 x*/N) and pq = P(Xj 2 (x*/N):[1/(1+S/N)])

where X; 1is a chi-square random variakle with m degrees of
freedom, x* is a number which is determined by the decision rule
and S/N 1is the signal-to-noise ratio. A receiver that would
implement a likelihood ratio decision rule under the conditions
of the second model is called an energy detector or square law
detector.

The mean of a chi-square random variable with m degrees of
freedom is m and the variance is 2m. By the central limit
theorem, as the number of degrees of freedom of a chi-square
random variable becomes large it can be approximated by a normal
random variable with the same mean and variance. Hence, for a
sufficiently large sample size m or equivalently, for a
sufficiently large time bandwidth product t-(BW), the
conditional probabilities pgy and pg can be approximated by
Pe = 1 - &(v*) and pg =1 - &{[1/(1+S/N)]-(v* - al)) where the
threshold value v* = (x* - mo')/[(Zm)ic’] and d = t- (BW) (S/N)?
if the concept of bandwidth is appiicable. 1If, in addition, the
noise N 1is significantly larger than the signal S, that is, if
te(BW) >> 1 and S/N << 1, then pg and pg can be
approximated by: pg =1 - #(v®) and pg = 1 - #(v* - a).

In Reference 2, the conditions reqguired for this
approximation are called Case II and in the following sections
the limiting form of the second model is called the Case II

medel.
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Model IiI: 1In the third detection model, a sampled ncise
value and a sampled signal value are values of independent random
variables that are determined by independent Poisson processes
that is observed for a time interval t. The ncise process is
characterized by a counting rate a, the signal process is
characterized by a counting rate ag and the noise and signal
processes are additive. This implies that when the input is
noise alone, the input is a Poisson random variable with
parameter a-°t and when the input is signal and noise, the input
is a Poisson random variable with parameter (a + ag)-t.

For a likelihood ratio decision rule, pg = 1 - P(y*;a-t)
and pg =1 - Ply*:(a + ag)*t] where y* is a threshold value
that is determined by the decision rule and P(y;6) represents
the Poisson cumulative distribution function with parameter e.

When © 1is large, the cumulative digtyi
be approximated by the cunulative distribution function of a
normal random variable that has the same mean and variance.

Using this approximation for cases where a+t is large, since
both the mean and variance of a Pucisson random variable are equal
to €, pg=1-8(v*) and pg =1 - #([1/(1 + ag/a)})(v* - a}))
where v* = (y* - at)/(at)} and d = a-t-(ag/a)*. In addition,
if the signal counting rate is significantly smaller than the
noise counting rate, that is, if a¢t >> 1 and ag/a << 1, then
pf and pg can be approximated as follows: pg =1 - Q(v*) and
pg = 1 - #(v* - al).

11




The third detection model might be used tc describe a
receiver whose input for an observation is the number of photons
counted by a radiation detector in sitnations where a-t, the
expected number of counts when no signal is present, is of the
order of thirty or more.

When a likelihood ratio decision rule is used in the three
models discussed above, for the first model and under limiting
conditions for the second and third models, the following result
is obtained: pg =1 - #(v*) and pg =1 - &(v* - al) where the
definition of v* depends on the noise power N for the first
and second models. For a sonar receiver described by the first
model, that is, by the Case I model: d = 2t-(BW)(S/N). For a
sonar receiver described under the limiting conditions for the
second model, that is, by the Case II model, d = t-(BW)(S/N)?*.

So, in either a Case I model or a Case II model

o]

f a3 sonar
receiver, the detection index d is a function of the tinme
bandwidth product t-+(BW) and the signal-to-noise ratio S/N.
Since sonar equations relate S/N to system, target and

environmental parameters, a sonar equation can be used to relate

S/N to these parameters in a model of a sonar receiver,

12



IV. General Detection Models

The detectinn models that have been considered to this
point are based on birary detection theory. After each
observation, a receiver decides either that the input
corresponding to the cbservation was noise or else it decides it
was signal plus noise. However, in some detection systems this
decision is delayed. In a computational sense, a model of such a
detection system is generally ccmplex relative to a binary
detection model. To illustrate this, consider an active sonar
system whose receiver includes an operator. Suppose the
probability that the operator will detect a target echo has keen
determined in a laboratory experiment in which the operator was
required to decide after each input corresponding to a resolution
cell that either the input was a target echo (signal) and noise
or the input was noise alone. In addition, suppose that under
operational conditions the operator normally delays this
decision. Then, in general, the probability that the operator
will decide that the input corresponding to a resolution cell
that contains a target is a target echo and noise will not be
eqgual to the probability of the event in the forced choice
experiment. And, in addition, the probability that the cperator
will decide the input corresponding to a resolution cell that
does not coatain a target is a target echo and noise will not be
equal to the probability of this event in the forced choice

experiment. Consequently, in general. the value of both pg and

13
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pf for an operational environment will be different than that
for the laboratory environment.

One model that has been proposed to deal with this kind of
situation defines the event that a receiver decides that the
input corresponding to a resolution cell is signal and noise to
be equivalent to the event that out of n consecutive
observations at least k of them would result in the decision
that the input was signal and noise in a forced choice

experiment. The model is said to be based on an k-out-of-n

v

detection criterion. With this criterion, the probability that
target will be first detected on the jth observation can be
found as follows: Determine the 23] sequences of forced choice
responses that could result for a sequence of Jj consecutive
obcervations. Next, determine the probability of occurrence for
each seduence that first satisfies the X-~out-of-n detection
criterion on the jth observation. The probability of first
detection on the jth observation is equal to the sum of these
probal ilities. The cumulative probability of detecticn at the
jth observation is the sum of the probabilities of first

detection on the ith observation for i = 1,2, -+ ,j.

14
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V. Signal-~to-Noise Ratio Detection Models

In some radar and sonar detection models, for a
specified value of p¢, a minimum acrceptable value of pg is
defined. This minimam acceptable value of pg and the specified
value of pg Adefine what can be called a minimum acceptable
signal~to-noise ratio (S/N)p if pg 1is a nondecreasing
function of signal-to-noise ratic. 1In some sonar detection
models, (S/Njy, in decibels is called the detection threshold
DT. 1In symbols, DT = 10 log(S/N)p. If the minimum acceptable
value of pg 1is .5, then DT is usually called the recognition
differential RD. The difference between the signal~to-noise
ratio in decibels and RD (or DT) is calledl the signal excess
SE. In symbols, SE = 10 log(S/N) - RD.

One interpretation of signal excess is that for a
localization region containing a targei detection occurs with
probability one if SE 2 0 and with probability zero if SE < 0.
This interpretation provides the basis for defining detection in
the three encounter detection models that are discussed in
Secton VII. A more consistent interrretation of signal excess
is: If SE 2 0, then the probability of detection pg4 is
greater than or equal to the minimum acceptable value (.5 if
recognition differential RY is used to define signal excess).
For cases where pq increases rapidly with signal excess in the
neighborhood of zero signal excess, the two interpretations may

be operationally equivalent. For a discussion of this point as
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well as a discussion of an operational case in which receiver
decisions are delayed, see FEeference 3.

Signal excess (signal-to-noise ratio) detection models
provide a basis for general detection models, in particular,
models that describe nonstationary noise and signal proces..es and
randorly changing decision rules. This is iliustrated by the
models described in Section VII. In addition, signal excess
models provide a basis for delayed receiver decisjon models.

This is illustrated by the active sonar detection models in both
Reference 4 and Reference 5 that are based on a k-out-of-n
detection criterion. 1In all of these models, the signal-to~-noise
ratio and the recognition differential are random variables.

Using X(t) to represent a random variable corresponding to
an index time t and a subscript to identify the random variable
in such models, for a passive sonar recejver, the signal-to-noise
ratio in decibels associated with a decision at the index time
is: Xgr(t) = Xpp(t) - [XyL(t) ~ Xpr(t)]. In this expression,

SL represents source level, TL represents transmission loss,
NI, represents noise level and DI represents directivity index.
Since signal excess SE is defined to be the difference in
decibels between the signal-to-noise ratio and the recognition
differential (or detection threshold), it too is a random
variable and, for any decision time t, one can write:

(1) Xgg({t) = Xgp(t) = Xpp(t) =~ [Xnp(t) - Xpr(t)] - Xpp(t).

The distributions of “he random variables on the right side of

Equation 1 determine the distribution of the signal excess. 1In

lée




the passive sonar detection i.odel described in Reference 6,
Xgy,(t), Xgp(t) and, in effect, Xnp(t) are normally
distributed rindom variables while Xpp(t) is a uniformly
distributed random variable. In the three signal excess models
that are described in Section VII, all of the random variables in
Equation 1 are normally distributed.

It is sometimes convenient to write Equation 1 as follows:
(2) Xgp(t) = SE(t) + X(t).
In Equation 2, SE(t) is the expected value of the signal excess
determined by the following expected value egquation:
(3) SE(t) = SL{t) - TL(t) - [NL(t) = DI(t)] - RD(t)
where each term on the right represents the expected value of the
indicated random variable and X(t) is a random variable that
determines the stochastic character of the signal excess. Since
SE(t) is the mmean of Xgg(t):; by Equation 2, the mean of X(t)
is equal to zero and the standard deviation of X(t) is equal to
the standard deviation of Xgg(t). If o represents the
standard deviation of Xgg(t) and the random variables on the
right side of Equaticn 1 are statistically independent, then
o' = °§L + céL + oﬁL + GBI + oéD. This relation has been used to
determine a standard deviation for the signal excess in

operaticnal models.

17
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VI. General Encounter Models

A basic problem associated with search modeling is that
of determining the probability that a target will be detected by
a detection system during an enacounter with one or more detection
systems. In the encounter models that are considered in this
report, during a search, observations are made of a series of
localization regions. The probability of detection on an
observation is P(D; n Hy). The probability of a false alarm on
an observation is P(D) n Hg). In these models, the time to
resolve a false alarm is ignored. However, pgq and pg are 1
assumed to be determined by some criterion such that pg is an

operationally reasonable value.

e A

oo ot

Using the order number of a decisicn rather than its time as
an index relative to detection decisions for localization regions
that contains a target and a random variablie N to represent the P
decision order number at which detection first occurs, the
probability of detection during an encounter can be written as:
P(N<n) =P(N<m) + P(N=mntl) + -+ + P(N = n) or equally as 4

P(N £ n)

i

1 -[1-P(N<m]*(2 - gpy3) *°* (L - gp) where

gi = P(R = i|N € i-1) is the probability of the event detection
at the i'h gecision conditioned on the event no detection at an
earlier decision and 1 < m < n. The seccnd expression is
generally of greater interest than the first expression, since 4
gj <can usually be more directly related to operational
parameters such as range and environmental conditions that

determine a target's detectability than can P(N = i). : {
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With a time rather than the order number to index a decision
and a random variable T to represent the time index at which
detection first occurs, P(N < n) becomes P(T < t,) with
P(T € tp) =1 = [1 ~P(T < ty)] (1 - g(tpe1)] ** [1 - g(tp))
where g(tj) = B(T = tj|T stj.q).

If g(tj) << 1 for i=1,2, »++ ,n, then, to a first
approximation, 1n[l - g(tj)] = -g(tj) for 1 =1,2, «++ ,n and

P(T < tp) =1 = [1 - P(T < 1ty) ) exp[-Z g(tj)). This follows

it

since P(T £ ty) 1 -[1 - P(T <€ tp)l*exp[Z In[1l =~ g(tj)] where

the sum index i m+l, *++ ,n. A continuous analog to this
approximation can be used to describe an encounter for which
g(tj) << 1 for i =m,m+l, =+ ,n and decisions during the
encounter can be considered to occur continuously. That is, the
time of an observation corresponding to a decision and the time

h negligikle relative tc the time of the
encounter.

The analog can be developed as follows: First, let 6§t be
the time between decisions, then tj = i-8t and the probability
of detection P(T < t,) =1 - (1 - P(T < tp))-exp[-Z 7(t;)-56t)
where 1T(tj) = (1/6t)+g(tj) 1is a detection rate function

(a probability of detection per unit time) and, in terms of §t,

the probability g(tj) = P{T = i+8t|T < (i-1)-8t].

If T 1is considered to be a continuous random variable, the
expression for P(T < tj) above indicates that the sum in the
exponent should be replaced by an inteyral whose integrand is a

continuous function 1(t). If 1(t) can be determined, then,
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with g(tj) as a guide, the cumulative probability of detection

P(T < t) can be defined by:

(4) T(t) = lim {(1/6t)P(t < T < t+6t|T < )}
where the limit is for &t approaching zeroc. Equation 4
implies the differential equatinon: dp(t)/dt = [1 - p(t)]+1(%t)

where p(t) = P(T £ t). A solution to this ejuation is:

tn
(5) P(T < tn) = 1 - [1 - P(T < tm)]'exp[-Jtm T(£)dt)

where t is the time index for a decision during an encounter, tm
is some time during the encounter an1 tn > tm. A T{t) that is
based on a visual detection model is descrited in Reference 7.

If the detection capability of a detection system is assumed to
depend on a target's position relative to the detection system
during an encounter but not to depend on the clock time, then the
time index of a decisicn can be a relative index that determines

the target pocition that is associated with a decision rather

.
n

than the clock time associated with the decision.

The above results apply to the case of an encounter between
a target and a collection of detection systems. However, if the
detection systems are not collocated, it is generally convenient
to describe encounters of this kind in terms of encounters
between the target and the individual detection systems. 1In
either case, if the event target detection for a detection system
is not independent of the event for other detection systems, then
in order to describe this in an encounter model the correlation
between the input to the detection system and the inputs to the
cther detection systems must be specified. This has been done in
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some models as follows: First determine the probability of
detection for each system acting alone. Let P; be the
probability that the ith system detects the target during the
enccunter under this condition. Next, consider two cases: 1In
the first case, the random factors that determine detection for a
system are independent of those that determine detection for the
remaining systems. In the second case, the random factors that
determine detection for the systems are completely dependent. 1In
the first case, the probability that at least one system detects
the target is given by: Pyp =1 = (1 - P1)-(1 - P3) +-+ (1 - Pp)
where n is the number of detection systems involved. 1In the
second case, the probability that none of the systems detect the
target is given by: 1 - Pp =1 - P where Py 2 Py for

i=1,2, *++ ,n since if the mntl system does not detect the
target, none ¢f the remaining systems will detect it. The

ne coystem detects the target is given
by: P = a+Pp + (1 ~ a) Py where a determines the degree of
correlation and 0 £ a £ 1. A way to determine a value for a

is described in Reference 8.
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VII. Three Signal Excess Encounter Models
in the three models described in this section,

éetection i1s detined in terms of signal excess as it is in
Section V. Each model determines a cumulative probability of
detection for a target in an encounter with a passive sconar
system. An cbservation in the models is indexed by time and the
index can usually be considered to be the time at the end of the
okservation. During an encounter, observations are made of a
series of localization regions. A false alarm can occur for a
lccalization region that does not contain a target during an
observation since the value of RD (or DT) 1is determined by
some specified false alarm probability. However, in effect, the
time to resolve a false alarm is zero.

To determine signal excess in the models, it is convenient
t¢ use Equation 2. For each decision in an encounte, there is a
random variable X(t) <Ze’ined by Equation 2 that dctermines the
random character of the signal excess. For a sequence of
decisions, the set of these random variables ordered by their
time index constitutes a stochastic process. And the joint
distrinu.ions of these random variables determines the nature of
the stochastic process. In the three encounter models described
in thiz section, the stochastic process is called a lamkbda-sigma
jump process. The time series that are generated by lambda-sigma
jump p.ocesses are represented by the plot in Figure 2 helow.
The jumps in the time series occur at times determined by a

Poisson process with a mean jump rate lambda. This implies that
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the time between jumps is a random variable with an exponential
distribution and that the expected times between jumps 171 is
equal tc the reciprocal of lambda. The time series that are
generated by lambda-sigma jump processes are represented by

Figure 2 below.

dB

r—.

[
|
1

| T T T T T T T time

=i
f

T

Figure 2. A time series representing a realization of a lambda-
sigma jump process. On the plot, ¢ in dB edquals one unit on
the vertical axis and 1 equals one time unit on the horizontal

axis.

From Figure 2, note that the observed values of neighboring
random variables are egual unless a jump has occurred between
them. When a jump occurs, the first random variable after the
jump is normally distributed with mean zero and variance ¢! and
it is independent of all the random variables before the jump.
Conditioned on a jump pattern, this random variable and all the

random variables between it and the next jump are dependent and
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the correlation coefficient between any pair is one. That is, if
the value of the signal excess is known at some time, then all of
the values between the last jump before that time and the first
jump after that time are also known. However, since the jumps
occur randomly, knowing the value of the signal excess with
certainty at some time does not determine the values of the
signal excess with certainty at neighboring times. 1In the
unconditioned case, the correlation coefficient between the
random variables X(t) and X(t+T1) 1is equal to 1l/e. For this
reason, 1T 1is referred to as a relaxation time.

It appears that the use of the lambda-sigma jump process is
based more on past practice than on experimental justification.
In this regard, see Reference 9. By referring to Equation 1, it
can be seen that the lambda-sigma jump process is determined by
the sum of the stochastic processex that determine the random
variables on the right side of this egquation. Although the sum
of a collection of normal random variables is a normal random
variable, the sum of a collection of lambda-sigma jump processes
is not a lambda-sigma jump process. This suggests that if the
lambda~-sigma jump process does adequately describe the
variability of the signal excess, then the majority of the
variability of the signal excess may be due to a single one of
its elements. For example, transmission loss.

In the three encounter models described belcw, detection is
defined in terms of signal excess as described in Section IV and

decisions are indexed by a time that can usually be considered to
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be the time of the decision. During an encounter, observations
are made of a series of localization regions. For localization
regions that do not contain a target, the signal ohserved during
an observation of the region is zero. In the models, the time to
resoive a false alarm is zero. However, false alarms are not
ignored in that the value of RD (or DT) is determined by some
specified false alarm probability. Consequently, although the
time to resolve a false alarm is zero, the cost associated with a
false alarm is not zero.

The First Passive Sonar Encounter Detection Model: This
mnodel describes an encounter in terms of a series of decisions
with each decision based on the signal excess Xgp(t) at a time
corresponding to the end of an observation. The observations are
of equal duration and the integration time that determines the
recognition differential is equal to the duration of the
. In the meodel, XYg4p(t) is determined by a lambda-
sigma jump process. For an encounter in which SE(t) is
unimodal and in which the time of the single maximum is prier to
the end of the encounter, it is shown in Reference 10 that the
probability p that detection will occur during the encounter
is given by the following equation:

(6) P =1=((1=pc)/(1=BPc)lc{l =~ B+Py) *** (1 - B+pp)
where g =1 - exp(~5t/7) and pj = ¢[SE(t;)/0) for i =1,2,
*++ ,m. Here, &t indicates the duration of an observation and
¢ indicates the standard normal cumulative distribution function

as before. The integer ¢ 1is the index of the decision time t.
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for which SE(tg) is greater than or equal to SE(tj) for any
time t; and t; < t. < tg.

As 1 approaches zero, f approaches one and Equation €
approaches this form:

(7) p=1-(-pij) **- (1 - Pp)-

In this limit, the signal excess random variables are all
independent. Note that Equation 7 applies without the condition
that SE(t) be unimodal.

As 1 approaches infinity, 8 approaches zero and
Equation 6 approaches this form:

(8) pP = pPc-

In this limit, the correlation coefficient between any pair of
signal excess random variables is equal to one. Note that
Equation 8 applies without the condition that SE(t) be
unimcodal. Eguation 8 defines a complete dependence encounter
nodel.

The Second Passive Sonar Encounter Detection Model: This
model is in a sense a third limiting form of the first passive
sonar encounter detection model. In this limit, the time between
decisions approaches zero. However, in this limit the
integration time that determines the recognition differential is
not equal to &t and it does not approach zero. It is, in
effect, chosen by the user of the mecdel through the user's choice
of the value for the recognition differential. For an encounter
that begins at t1 and ends at t2 and for which Xgp(t) is

determined by a lambda-sigma jump process and SE(t) 1is
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unimodal, it is shown in Reference 10 that for this limit,

Equation 6 has the following form:

t2
(¢) p=1-[1- P(tc)]‘EXP[‘(l/T)'.[tl p(t) dt]

where p(t) = &[SE(t)/c]) and where now t. 1is the encounter
time such that SE(t.) is greater than equal to SE(t) for any
other encounter time t and t1 < to < t2.

The Third Passive Sonar Encounter Detection Model: This
model describes an encounter between a target and a passive sonar
detection system in which detection occurs during an encounter if
the average value of the square of the continuously observed
signal-to-noise ratio over a time interval of length u is
greater than or equal to the square of the signal-to-noise ratio
that determines the recognition differentiai for an integration
time equal to u. With R(s) the random signal-to-noise ratio
at a time s and Rp(u) the random signal-to-noise ratio that
determines the random recognition differential for an integration
time u, detection during an encounter occurs at the first time

t that the following inequality is satisfied:

t
(10} (1/u) It-u [R(s)/Rp(u)]* ds 2 1
where the time origin is chosen so that t 2 0 and where the
integration time u =t for t <ty and u =ty for t 2 t,
where t; 1is a maximum integration time. The random integrand
in the inequality is related to the random signal excess at the
time s for an integration time u. The relation is:

(11) 10 log (R(s)/Rp(u)]* = 2[SE(s;u} + X(s)]
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where SE(s;u) 1is the expected value of the signal excess at a
time s for an integration time u and X(s) is the random
component of the signal excess at the time s. In the model,
X(s) 1is determined by a lambda-sigma jump process and SE(s;u)
is determined by an expected value sonar equation with a
recognition differential RD(u) = 10 log rp(u). Here, <zrp(t) is
the value of the signal-to~noise ratio that gives a probakility
of detection equal to .5 for an integration time t and a
specified probability of false alarm pg. With the sigral
detection process described by a Case 1II signal detection model,
the detection index necessary to give the required operating
point (pg,.5) 1is related to the integraticon time t and the
signal-to-noise ratio rp(t) by:

{12) d = u+ (BW) [rp(t)1*

where BW is the bandwidth of the receiver. For a spectrum
analyzer, BW would be the bandwidth corresponding to a given
frequency resolution and d would be the detection index
required in order to be at the operating pecint (pg,.5) for a
signal that was contained within a bandwidth BwW. Since d in
Equation 12 must be the same for t =u and t = tg,

(13) RD(u) = S5 log(tgy/u) + RD(tg)

where tgo is the maximum integration time. Then, since

SE(s;u) = SE(s:tg) = RD(tg) = RD(u), by using Equation 13 and
Equation 11, Relation 10 becomes:

Jt {1/5) [X(s) + SE(s:tg) - 5 log(tgp)]

(14) tey 10 ds 2 1

28



where as above the time origin is chosen so that t 2 0, the
integration time u =t for t <ty and u =ty for t x t,
and where SE(s:tg) is the expected value of the signal cxcess
at the time s for a recognition differential determined by an
integration time tg. 1In an encounter, detection occurs the
first time that Relation 14 is satisfied.

As is pointed out in Reference 11, the appeal of the Third
Passive Sonar Encounter Detection Model relative to the Second
and First Passive Sonar Encounter Detection Models is that it
appears to more closely describe the detection process in passive
sonar detecticn systems that display their processed data to an
operator in a continuous manner over a time window of duration
ty. However, results reported in Reference 12 indicate that the
difference between the three models may not be significant in

some types of encounters.
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VIII. Straight Line Encounters

Suppose a target's detectability depends on its range
from a detection system and that the probability of detection is
effectively zero beyond a range rp for any target azimuth. 1In
this report, an encounter between the target and the detection
system is the event that the range between the target and the
detection system is less than or equal to rp. In addition,
suppose rp is small enough so that when the target and the
detection system are having an encounter they can be considered
to be moving on planes parallel to a tangent plane to the earth's
surface at some pointc in their vicinity. If this is the case,
then while the target and detection system maintain a constant
course and speed during an encountér, the encounter is called a
straight line encounter.

A straight line encounter can be described in terms of a two
dimensional rectangular coordinate system whose plane is parallel
to the tangent plane to the earth. If the coordinate system is
stationary relative to the detection system with the detection
system located at the origin and is oriented so that the target's
motion is parallel to the y-axis and is in the positive
y-direction, then the target's x-coordinate during a straight
line encounter will be constant. The constant is equal to the
target's horizontal range at the closest point of approach (CPA)
on the straight line track on which the target is moving relative
to the detection system during the encounter. This range is

called the target's lateral range.
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A complete straight line encounter is a straight line
encounter that begins at a range from a detection system that is
greater than or equal to r, and continues past CPA tc a range
from the detection system that is again equal to or greater than
rn- Let p(x) be the cumulative probability that a target is
detected by a detection system in a complete straight line
encounter in which the target's lateral range is x. Then the
function p(x) defines what is called a lateral range curve or
lateral range function.

Let p be the probability that a target is detected during a
complete straight line encounter. If the lateral range of a
target in a straight line encounter is assumed to be a continuous
random variable X with a uniform distribution with fyx(x) = 1l/a 1
for |x| € a/2 and p(x) = 0 for |x| > a/2, then the
probability that a target will be detected during a complete P

straight line encounter is given by:

(13) p = (1/a) me p(x) ax
where the limits of integration can be used since the value of ]
p(x) is zero for |[x| > a/2. Equation 15 suggests a measure of
a detection system's capability to detect a target in a straight

line encounter. The measure W 1is c:'led sweep width and

(16) W= J: p(x) dx.

With this definition, Equation 16 becomes: p = (1/2a)°W.
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IX. Two Intermittent Signal Encounter Models

In the intermittent signal encounter models that are
described in this section, an encounter is a complete straight
line encounter, and during an encounter a target either emits a
signal (an acoustic transient) or its presence (a visible
submarine mast) is the cause of a signal at various times. Two
cases are considered: 1In the first case, the signals occur
periodically, the signals are of length &t and the time between
the occurrence of signals is 1 where T > §t. 1In the second
case, &t = 0 (the signals are instantaneous) and the signals
occur at times determined by a Poisson process for which the
expected time between signals is egual to 1. In the model, the
detectability of a target signal depends on a target's horizontal
range from a detection system, but on no other factors. 1If a
signal occurs while the target is within a range r, it will be
detected. For a continucus signal, the lateral range functicn of
a detection system for a target is: p(x) =1 for IxI < r and
p(x) = 0 for Ix| > r where the horizontal range r is
determined by the characteristics of the detection system and the
target. The geonetry for an encounter is shown in Figure 3
below.

For intermittent signals, the length of a target's track
relative to a detection system on which a signal will be detected
is 2+(r* - x’)§ + webt where w is the speed of the target
relative to the detection system. So, a target's exposure time

during an encounter is (2/w)-(r?* - x)} + st
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For periodic signals, there are two cases. 1In the first
case, r 2 w+(1 - §t)/2. 1In this case, the signals result in the

following lateral range function:

p(x) = 0 for |x| > r
(17) p(x) =1 for x| < {r* - [w+(r - 6t)/2]1%})%
p(x) = [2/(wW-T)]*(r* - x*)% + §t/7 otherwise

In the second case, r < W+ (7 - é6t)/2 and the middle equality
in Equation 17 does not apply.

For signals that are instantaneous and whose occurrence is
determined by a Poisson process, the signals result in the
following lateral range function:

1 - exp(~[2/(weT)] (Xr* - x’)%} for |x| < r

p{x)
(18)

p(x) 0 for |x| > r.

— Target

Figure 3. The encounter geometry for the two intermittent signal

models described here.
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For signals whose occurrence is determined by a Poisson
process and for which &t > 0, signals can overlap. If this is
allowed, then Equation 18 can be modified to describe this case
by adding &t/1 to the term in the exponent of Equation 18 that
is within the square brackets. In particular, note that this
modified Equation 18 can be approximated by the bottom equality
in Equation 17 when (2/we1)(r® - x*")} + 8t/7 << 1. This
implies that when the expected time 1T between signals is large
relative to the exposure time (2/w)(r*® - x’)i + §t, the periodic
occurrence model and the random occurrence model are effectively

equivalent.
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X. A Random Search Model

A search of a region in which a target moves on a track
that consists of a number of straight segments placed in such a
way that in a limiting sense every section of the region is
equally likely to be searched on a segment is referred to as a
random search in Reference 6. Representation of a search region
with the track segments that could be imagined to be the tracks

of a random search are shown in Figure 4.

Figure 4. A search region and a track that could ke described as

a random search track.

Two developments of a model to describe this kind of search
are contained in this section. The first develcpmert is based on
the following conditions: 1. A target is at a fixed position
within a defined search region. 2. A searcher's track is a
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sequence of straight line segments that are within the search
region. 3. The searchter's detection system is such that while on
a track segment, a rectangle is searéhed that is contained within
the search region, is of length equal to the length of the track
segment and is oriented so that its long axis is parallel to the
track segment. 4. The probability that the searcher's detection
system will detect a taryet while on a track segment with a
search rectingle that does not contain the target is zero. The
probability that the searcher's detection system will detect a
ta-get while on a track segment with a search rectangle that
contains the target is p(x) where x 1is the target's lateral
range for the track segment and p(x) is the lateral range curve
for a complete straight line encounter lateral rangse x. A
representation of 2 search rectangle is shown in Figure S below.
5. The track seaments are located in such a way that the event
that the target is within the search rectangle associated with a
trazk segient is independent of the event that the target in the
search recta gle associated with any other track segment. And
the probability of the event is equal to the ratio of the area of
the search rectangle to the area of the search regicn and, given
a target is within a search rectangle, its position is uniformly
distributed over the rectangle.

Condition 4 impliec that the random search model is based
on the concept of a complete straight line encounter. The
definitimnn 01 an ancounter that is intended here is that given in

Section V{. This implies that in the random search model the
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time to resolve a false alarm is
Pq and pg are considered to be
such that pg is less than one.

to resolve a false alarm is zero
associated with a false alarm is
accounts for the time to resolve
Reference 13.) Condition 4

on a track segment with a search

target, the encounter is a complete straight line encounter.

zero. However, for the model,
determined by some criterion
Consequently, although the time
in the model, the cost

not zero. (A concise model that

false alarms is described in

also implies that when a searcher is

rectangle that contains a

And

Conditien 5, which can be considered to specify a random

arrangement of the track segments,

implies that when this is the

case, for the complete straight line encounter, the target's

lateral range is a

between -b/2 and b/2 where

random variable that is uniformly distributed

b is width of the search

rectangle (the dimension of the rectangle perpendicular to the

associated track segment).

Swept Area

Track

Figure 5.

A track segment and its associated search rectangle.

that could correspond to a search with an aircraft mounted

infrared detection systen.
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Based on the above considerations, the probability that a
target will be detected while a searcher is on a track segment

with an associated search rectangle that contains the target is

given by:

(19) Ifm p(x) fx(x) dx = W/b

where fy(x) = 1/b for =-b/2 < x £ b/2 and fx(x) = 0 and

p(x) = 0 otherwise. Note that the left side of Equation 19
applies to any complete straight line encounter in which the
target's lateral range for the encounter is considered to be a
random variable with a distribution determined by the probability
density function fy(x). If it is not given that the target is
within the search rectangle associated with a track segment, then
the unconditional probability that the target will be detected on
the track sagment is given by: (W/b)-(8A/A) where &A is the
area of the search rectangle associated with the track segment
and A is the area of the search region. With 1 the length of
the rectangle, &6A = b*l and the probability becomes: (W-1)/A.
Then, since the event that the target will bs in the search
rectangle of a track segment is independent of the event that it
will be in the search rectangle of any other track segment, the
prokability p that a random search consisting of m track
segments will detect the target is given by:

1 - (1 - (We3q)/AJ[1 - (Wely)/A] +++ [1 - (We1l,)/A] where 1y

is the length of the ith  track segrent. The probability is

also given by: p =1 - exp{(¥ ln[l - (W<1l;)/A)} where the sum
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index i =12,2, ¢« ,n., If (W:lj)/A << 1 for i =1,2, -+ ,n,
then this expression can be approximated by:

(20) P= 1- exp[-(W-1)/A]

where 1 = Z 1j is the track length of the search. Equation 20
is known as the random search formula.

The second development of the random search formula is based
cn Equation 5 and a detection rate for a random search given by:
7(t) = W-v(t)/A. With this detection rate and Equation S, the
random search formula is given by:

(20a) P(T £ t) =1 - exp {—~(W-1(t)]/A)
where 1(t) 1is the track lergth for a random search that starts

at time 0 and ends at time t and

t

(20Db) 1(t) = Io v(s)ds.
Replacing P(T € t) by p and 1(t) by 1 gagives Equation 20.
In the form of Equation 20a, the random search formula indicates
explicitly the relation between the probability of detection and
the duration of a random search. Note that Equation 20a implies
that the sweep width is independent of speed over the range of
speeds in the encounter.

Reference 14 contains an example of an application of the
method used in the second development of the random search
formula to a random search where the search regicn expands with

time.
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XI. Ladder and Barrier Search Models
In some barrier searches, the barrier search track is a

ladder search track relative to a reference system that moves
with the target. This fact is used in the barrier search model
development that follows the two ladder search model developnents
below. The first ladder search model is referred to as an ideal
ladder search model because of the idealizations that are
involved in its description of a ladder search. The second
ladder search model is referred to as a degraded ladder search.
It can be considered to describe a ladder search track in which
navigatinnal errors result in omissions and overlaps in coverage.

An Ideali Ladder Search Model: The model is based on the
following conditions: 1. A ladder search region is a rectangle
that contains a fixed target. 2. During a search of the region,
the searcher's detection system moves on a set of m parallel
track segments of length b separated by a distance s. 3. As
the detection system moves along a track segment, it searches a
rectangular strip of length b and width s within the search
region. 4. The m rectangular strips that correspond to the m
track segments completely cover the ladder search ragion with nc
overlap. 5. If a target is within the rectangular strip
corresponding to a track segment, then there will be a complete
straight line encounter between the target and the detection
system when the detection system moves along the track segment
and the lateral range of the encornter will be uniformly

distributed across the width of the strip. If the target is not
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in the rectanguliar strip, then there will not be an encounter and
the probability that the target will be detected while the

detection system is on the track segment is zero.

Figure 6. A schematic representation of a ladder search geometry
for a case in which the ladder search track segments are
superimposed on and bisect their corresponding rectangular

SLrips.

Since targets ocutside of the rectangular strip that |
corresponds to a track segment cannot be detected while a
detection system is on the track segment because of Condition 5, i
in the model, the sweep width W of a searcher's detection
system must satisfy the relation W £ s . 1In particular, W = s F
only holds when the detection system detects a target that is in

a rectangular strip with probability one for any target lateral

range. This kind of detection system is scmetimes referred to as
a cookie cutter detection system. However, this terminology can
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be misleading since it suggests the detection system detects
equally well for all azimuths. But this is not a requirement on
the system in order that W = s.

The ideal ladder search model implies that if the conditions
of the model are satisfied, then the probability p that a
target will be detected by a an ideal ladder search is given by:
(21) p = Ws
where ¥/s < 1. The quantity W/s is called the coverage
factor in this case.

A Degraded Ladder Search Model: The above model implies
perfect navigation in addition to other idealizations. A model
of a ladder search is given in Reference 6 that could be used
for cases in vhich this is a poor assumption. The model which is
referred to here as a degraded ladder search model can be

considered to descrike navigational inaccuracies in terms of

. .
cmicsione and overla

ps of the rectangular strips. It can be
developed as follows: Consider a random search in the ladder
search region whose track length is equal to the search track
length required to complete -n ideal ladder search, that is, a
track length 1 = m<b. The degraded ladder search model
describes the result of omissions and overlaps in a ladder search
to be such that the probability of detection for this random
search is equal to the probability of detection for the degraded
ladder search. Consequently, since the area of the ladder search
region is mes*b, for the degraded ladder search model:

(22) P =1~ exp(-W/s).
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Here, the requirement that the coverage factor W/s < 1 for
Equation 21 can be relaxed. However, it should still be
considered as an approximate condition.

The condition that the target be fixed within the
rectangular search region is critical to both Equation 21 and
Equation 22. However, these results are also applicable to a
search for a moving target under the conditions that are
described next.

A Barrier Search Model: A target moves with a constant
course and a constant speed u. Both the target's course and the
target's speed are known by a searcher. The searcher establishes
a barrier of width b that is perpendicular to the target's
track and moves on the barrier with a speed v > u. The barric
is designed so that in a reference sy: tem relative to the target
the barrier search is a ladder search that satisfies the
onge for a ladder search that are given abhove There are
two cases to consider: 1. The barrier is established in front of
the target. 2. The barrier is established behind the target.

From the search geometry for a barrier established in front
of the target, it can be seen from Figure 7 below that
0 = sin‘l(u/v) and d = v+1 where 7 = s/(v + u) 1is the time to
move from one search leqg to the next. The angle 6 and the
perpendicular distance d that depend on u, v and s, and the
width of the barrier b are the quantities that are required in

order tc establish the barrier operationally.
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Figure 7. A barrier search track shown for a barrier established
in front of the target. The track is shown in a reference system

fixed relative to the earth.

For a barrier that is established in front of a target, onc
er types will result. A barrier's type is
determined b the relation of the distance d to the distance

g = ut where the time t = b/ (v = u‘)li is the time to complete
a search leg (cross the barrier). The barrier type is determined
as follows: 1. For g < d4, the barrier is an advancing barrier.

d, the barrier is a stationary barrier.

]

2. For g
3. For g > d, the barrier is a retreating barrier.

For a barrier established behind the target, there is only
one barrier type and it is called an overtaking barrier. For an
overtaking barrier, € = sin~l(u/v) as for a barrier established
in front of the target. But, fcr an overtaking barrier,

T =8/(V~u) and d = v:s/(v - u).
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Given the target crosses the barrier, the prcbability of
detection for an ideal barrier search is given by Equation 21
and the probability for a degraded barrier search is given by
Equation 22 where the ternminology refers to the nature of the
ladder search in the reference system moving with the target.
A discussion of an application of these two equations to a search

for a magnetic anomaly target is given in Reference 15.
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XII. A Target State Estimation Procedure

A target state estimation procedure based on bearingy
observations is developed in this section that generates point
estimates of a target's position and velocity vector coordinates
in a rectangular coordinate system. The procedure is based on a
podel in which bearing errors are unknown and are not determined
by random variables with known distributions. Because of this,
confidence regions for the estimates are not generated by the
procedure. However, for a moving target, it illustrates general
characteristics of bearings only target motion analysis (TMA).
The model is defined as follows: 1. The target moves in a plane
with a constant but unknown course and speed. 2. Observations of
the target are made from known positions at known times. 3. The
observations provide only target bearings with unknown errors.

The model geometry is shown in Figure 8.

d;j = rij-sin (B - 6j)

[xe(i),ye(i)] estimate
r; range estimate
observed 6j;

bearing bearing estimate

[Xo(i),¥o(1)] ¢ observer

x East

Figure 8. The ygeometry of the target motion analysis model.
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The procedure criterion is: For observations from n positiong,
choose target position estimates and target velocity component
estimates u, and uy that make the sum of the squares of the
algebraic distance between the estimated positions and their
corresponding .bserved bearing lines a minimum. From Figure 8,
it can be seen that the algebraic distance can be written as

dj = [xe (i) - xg(i)]+cos 8f - (yr(i) - ¥Yo(i)]+sin 65. Because of
the requirement that the target move with constant course and
speed during the encounter, the number of independent estimates
is reduced from 2n to 4, uy , uy and any two position
estimates x¢(3), Ye(J)- In the following development, § = 1
and with i = 2,3, +++ ,n the remaining estimates are given by:
xp (i) = xg (1) + uyg-(tj - ty) and ye(d) = ye(l) + upe(tj - ty).
To determine "best" estimates of the target state parameters,
take the partial derivative of the sum $§ = I (dj)* with respect
to each of them. Then set the four partial derivatives equal to
zero. This creates four linear equations in xg (1), ye(l). uy
and uy whose solution are the desired estimates X¢ (1), ye(1),
uy, and uy. In matrix notation, the equations can be
represented by AX = B where the elements of X are:

X311 = %Xe(1), X231 = ye(l), X33 = uy and X4; = Uy. A nhecessary
condition for a unique solution for X is that n 2 4.
Otherwise, the determinant of A will be equal to zero. The
procedure can also be used if a target's course and speed are
constant and known and, in particular, if the target is

stationary so that uy, and uy both equal zero. In this case,
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since the number of unknowns is two, the number of linear
equations is also two and a necessary condition for a unique
solution is n 2 2.

Now, suppose the observations are at positions and times
that correspond to the positions and times of an observer moving
on some constant course at some constant speed (including zero
speed). In this case, the observation position coordinates are
related by the following equations: xg(i) = Xo(l) + vy (t; - tq)
and ygo(i) = yo(1) + vy(ti - t;) where v, and vy are the
required velocity components of the observer. Using these
equations of motion, the matrix equation AX = B can be
transformed to the matrix equation AX'= 0 where the elements
of the matrix X are related to the elements of the matrix X'
by the equations: xil = Xt (1) = Xg(1), xél = Ye(l) - yo(1),
xsl = uy = vy and xil = Uy = Vy.

Since the linear equations represented by aAX' = 0 are
homogenous, they do not have unigque solutions and consequently
neither do the equ-tions represented by AX = B. However, if
there is at least one observation whose time and position is not
determined by the above equations of motion, then the
transformation from X to X' cannot be made, and in general a
unique solution for X can be found. If the ocbservations are
made from a platform that is moving with a constant course and
speed, this condition can be achieved by either changing the
course, the speed or both prior to completing the observations.

Estimation models that describe bearing error as a random
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variable provide a basis for determining confidence regions ftor

point estimates. A model is developed in Reference 16 that does
this for either target bearing observations made from two or more
pcints simultaneously or for a target that is stationary relative

to the observation points.
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JIII. Posivicon Distributions That Change with Motion
Target motion models provide a basis for determining

pesition distributions that change with target motion. 1In this
sectiol, two classes of target motion mcdels are considered. 1In
the first class, a target moves in a plane with a censtant course
and speed. In the second class, a target moves in a plane but
its course or speed changes during the motion. Three members of
the first class are developed first. This is followed by a brief
discussion of some models of the second class.

The First Motion Model: In the first nodel, X(0) and
Y{0}, a target's random position coordinates at time zero, have a
joint distributicn that is circular normal with mean vector
(0,0) and standard deviation o¢. The joint distribution of the
velocity ccmponents Uy and Uy is circular normal with mean
vector (ﬁx,ﬁy) and standard deviation o,; and the random
variables Uy, and U, are independent of X(0) and Y(0). The
targzt coordinates at time t are given by X(t) = X(0) + Uy*t
ard Y(t) = Y(O) + Uy-t. Therefore, the random vector
[X(t),Y(t)] 1is a normal random vector and its characteristic
function is equal to the product of the characteristic functions
of the random vectors [X{(0),Y¥(0)] and [Ux't,Uy°t]. This
implies that X(t} and Y(t) have a circular normal
distrioution whose mean vector is (ﬁx-t,ﬁy-t) and whose
variance is (o' + o)°t?). For a more complete discussion of the

basis for the above argument, see Reference 7
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The Second Motion Model: 1In the second model as in the
first, X(0) and Y(0), a target's random position cocrdinates at
time zero, have a joint distribution that is circular normal with
nean vector (0,0) and standard deviation o. However, in this
model, target speed u is known, but its course is equally
likely to have any value between 0 and 2, so Uy, = u-sin ¢
and Uy = uccos ¢ where ¢ is a random variable with a uniform
distribution and 0 £ ¢ < 27. In this model, only the random
variable & is required to determine the target's velocity. The
equation that is described belcow that determines the distribution
of the random position coordinates ({X(t),Y¥(t)] can also be used
to determine it for the first model. It is based on the
following consideration: If a target's course and speed do not
change during its motion, the joint density function of its
position coordinates at some time t is determined by the

equation:

L« BT o]
(23)  Ex(e),y(t)(xX.,yit) = J-wj_wfx(o),y(o)(q,s;O) fy,w(v,w) dvdw
where g = x -~ vt and s =y - w't and V =Uy, W= Uy, vV = uy
W = uy and t 2 0. Equation 23 can be developed as follows:
7o first order, fx(t),y(t) (x-yit)-8x-8y is the probability that
a target's coordinatec are in an element of area &x+8&y and for
given values of v, w and ¢, target positions in an element of
area 6g-és will be translated to an element of area §%x-§y
that is identical in form and size to &§g+§s. And so, to first
order, fyx(g),y(0)(4,si0) 8x-8y-fy ylu,v)-6v-éw 1is the
probability that the target's coordinates ac time 0 are in an
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element of area 6q-és that is located such that the target's
coordinates will be in the element of area §&x-8y at time t
since x =g + vt and y = s + w+t. And, to first order, the
sum of such probabilities for all pairs of valuas of v and w
is also the probability that the target's coordinates at time ¢t
are in the element of area &6x-8y. 1n the limit after equating
the two expressions for this probability and cancelling the
common factor &x¢§y, Egquation 23 results,

With the velocity components in polar coordinates, the
integral of Equation 23 is a single integral over ¢ and the
integrand of the integral is (1/27m0*)-exp[-(qg® + s*)/2¢%]+(1/2™)

where now q = x — u*t*sin ¢ and s =y - u*tecos ¢. The result
of the integration is:

(24) (1/2m0*) exp(-[x* + y' + (u-t)*1/20%} Igl(x* + y*)t.u-t/o")
where t 2 0 and I indicates the hyperbolic Bessel function of
zeroth order. 1in Reference 6 for several values of ¢,
Expression 24 is plotted in terms of r = (x?* + y’)*, the
target's range from the origin. The plot shows a limiting
characteristic of this distribution that can be indicated as
follows: First replace (x° + y’)3 by r 1in Expression 24,
Then, by first multiplying and then dividing the resulting
expression by exp(-r-ru-t/o®)+ the following expression results:
(25) 1/(2nc*)exp{~[1/{20")])(r - u*t)*}Isr u-t/o')exp(-r-u-t/o’)
where t 2 0. The second factor ir Expression 25 is
procportional to the density function of a normal random variable

whose mean is u-*t and vhose standard deviation is ¢. And the
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last two factors are such that their product decreases slowly as
a function of r. The conseqguence of this is that a plot of
Expression 25 against r for values of t greater than 4-:0/u
has the appearance of a normal density function. 1In particular,
this indicates that u+*t in the exponent of the second factor in
Expression 25 can be viewed as the radius of an average furthest
on circle.

2 target's random rectangular coordinates X(t) and Y(t)
and its random bearing ©(t) and range R(t) from the origin
are related by: X(t} = R(t) sin 8(t) and Y{t) = R(t) cos 8(t).
By using these equations, Expression 24 can be transformed to:
(26) (l/2m)(r/2na*)exp{-({r* + (ut)*]/20*}Ig(rut/c?*)
which is the joint density function of the random variables_ R(t)
and ©(t). The marginal density function of R(t) can be
obtained from Expression 26 by inteqrating this joint density
function over the possible values of ©(t) which in radians is
over the interval 0 To 27. Consequently, the marginal density
for R can be obtained from Expression 26 by multiplying it by
2n. Tabulated values of the cumulative distribution function
Fr(r:t) for the marginal distribution of R for the seccnd case
are listed in Reference 17.

The Third Motion Model: In the third model, only a target's
maximum speed u,; is known, but a target's position at time zero
is known to be at the origin cof the position coordinate system
and, after that time, to be uniformly distributed on a circular

disk of radius up*t centered at the origin. This implies that
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(27) fX(t),Y(t)(x:Y7t) = 1/(up-t?)

for t > 0 where x' + y*' < up-t® and that

(28) fR(t),e(t)(r,a) = r/(meug-t?)

for t > 0 where 0 <r £ up*t and 0 £ a < 2-m.

The range of values of r and <o are independent and the joint
density function of R(t) and ©(t) is equal to the product of
l/(2°m) and 2:r/(up-t®). This implies that for the wmarginal
distributions with density functions: fR(t)(u) = 2.r/(up-t?)
where O < r < up-t and fe(t)(a) = 1/(2*7) where 0 £ a < 2+m,
the random variables R{t) and €(t) are independent, their
joint density function is given by Equation 28 and the joint
density function of X(t) and Y(t) is given by Equation 27.
These two marginal distributions can be achieved by chcosing, at
time zero, a course 6 from the uniform distribution with
density function fg{a) = 1/(2-%) where 0 < a < 2*7 and a speed
U from the triangular distribution with density function ig(u)
= 2+u/up where 0 < u < up.

Motion Mcdels of the Second Class: 1In the second class of
motion models, a target's course or speed or both can change. In
general, a monte carlo simulation method is required in order to
determine a position distribution that is based on such a model.
As an example of cases in which the distribution can be described
analytically, see Reference 18 and Reference 19. As an exanmple
of a case in which it can not, suppose a target's initial
position is described in terms of a number assigned to a

subregion in the xy-plane where the number assigned represents
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the probabilify that the subregion contains the target at an
initial time. 1In addition, suppose for each subregion a course
and speed distribution is determined by assigning numbers to
course and speed pairs where a number represents the probability
the target will have the course and speed at the initial time
given it is in the subregion at that time. Next suppose for each
course ard speed pair there is a time distribution that
determines the duration of the course #nd speed pair and that the
time distribution is determined by a number assigned to each
discrete time point where the number represents the probability
that the target's course and speed pair will be determined by a
new course and speed distribution. By extending this kind of
procedure and then implementing it in a monte carlo simulation,
one can generate complex position distributions that describe a

target's position at discrete time points.
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XIV. Position Distributions T :at Change with Search

Suppose a target's position at some time is described
by a position distribution. Now suppose information becomes
available that a search has been conducted for the target and
that the target has not been detected. Or suppose the
information is that the target has been detected. In the first
case, negative information is available that can be used to
modify the position distribution. In the second case, positive
information is available that can be used to modify the position
distribution. In bhoth of the cases, a target's position
distribution is assumed to be specified in terms of a set of
discrete probabilities where each probability corresponds to a
subregion of the region that contains the target and each is the
probability that the target is in that subregion.

Position Distributions and Negative Information: For a
region that contains a target and consists ¢f n subredgions, let
the event §; = (the target is in the ith subregion}. And let
the event C = {no contact). Then, given no contact in a search
of the region, the targets's position distribution can be
modified as follows:

(29)  P(s;IC) = P(C|S;) P(5;)/P(T)

where i = 1,2, *+-+ ,n and P(C) = % P(EISj)-P(Sj) with the sum
index j = 1,2, ++*+ ,n. Note that Eguation 29 can be obtained
by using Bayes theorem. To illustrate now Equation 26 might ke
used, suppose that a search in a subregion is considered tc be a

random search and that the sweep width of detection system
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against the target depends on subregion being searched. For this
case, let A3 be the area of the ith subregion and let W; be
the sweep width in that subregion. Then, given no contact in a
search of a subregion, P(C|Sj) = exp[-(Wj-1j)/Aj] whezre 1j is
the track length of the searcher in the ith subregion. Given
values for P(Sj), Wj/Aj and 13 for i =1,2, +++ ,n, a
position distribution can be determined that has been modified by
the negative information.

Position Distributions and Positive Information: 1In the
case of positive information, the event € = (a contact) occurs.
This event is the union of two mutually exclusive and exhaustive
events: T = {a true contact} and F, = {(a false contact).
Relative to the Venn diagram of Figure 1, the event S; defined
above corresponds to H;, € corresponds to D3, T¢
corresponds to (D; n Hy) and F. corresponds to (Dy n Hy).
For generality, suppose true contacts do not localize a target to
a single subregion. Then after a seaxrch of a region that has
resulted in a contact, the target's position distribution can be
modified as fcllows:

(30)  P(Si|C) = P(SjITc) -P(TclC) + P(S;|Fg) P(Fclc)

where i =1,2, *++ ,n since Tg =T nNnC, Fg=FnC and
P(SjlC) = (P[(S§ n Tg) + P(Sj n Fg)1}/P(C). The probability

P = P(TCIC) has been called the credibility of the contact. 1In
terms of p Equation 30 becomes:

(31) P(silc) = P(SjITo)*p + P(S3|FL) (1 ~ p).
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For the model, P(S;|Ts) can be determined by the coverage
characteristics of the detection system that is used to make the
contact. 1In particular, P(Sj|To) = P{TclSi) P(Sj)/P(Te) where
P(Te) = T P(Tc|Sj)-P(Sj) and the sum index j = 1,2, ++- ,n.
Then, using the correspondence between the events S; and H;
and the events T, and (D; n Hp), a definition for P(T|S;)
is P(TclSi) = (pq)j where (pg)j is an average probability of
detection over the ith subregion. Note, if C = T,, then p =1

and Equation 31 can be written as P(S;|C) = P(C|S5;)/P(C) where

i=1,2, +- ,n and P(C) = £ P(C|S§)+P(Sj} with the sum index
j=1,2, - ,n .hich is analcgous to Equation 30. In one
positive information model, P(SiIFc) = P(Sj) (false contacts
supply no information about a target's location), and p is
determined subjectively based on factors associated with the
detection system used to make the contact. The probability
determined by 1 - p has been called the false alarm
probability. However, it is not the probability p¢ = P(DIIHO).
Since 1 - p = P(F.|C), it is the probability P(Hg|Dq).

This approach could also be used to mcdify a position
distribution given negative information. To do this, note that
the event C is the union of two mutually exclusive and
exhaustive events: the event Tz = {a true no contact} and the
event Fg = {(a false no contact). Relative to the Venn diagram of
Figure 1, C corresponds to Dg, Tg corresponds to (Dg n Hp)
and Fg corresponds to (Dg n Hy) and the countrpart of

Equation 31 is:
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(32) P(sjlc) = pP(si|Tg)'P + P(Si[Fm)-(1 -~ P)

where p = P(Tz|C). Relative to the Venn diagram of Figure 1,
p = P(DglHg). In keeping with the choice for P(Sj|F.) above,
one could choose P(S;j|Tg) = P(S;) and P(Sj|Fg) could be
determined by the coverage characteristics of the detection
system. In particular, P(3ij|Fg) = P(Fgl|S;) P(5;)/Fg) where
P(Fg) = £ P(Falsj)-P(Sj) and the sum index j = 1,2, ++ ,n.
Using the correspondence between the events Fgz and Dy n H;
one can write P(Fgl|Sj) = 1 - (pg)j.

Both in the case of this procedure for negative information
and the procedure for positive information, (pg)j <can be viewed
as a measure of the specified performance of a detection system
and both P and p can be viewed as measures of the degradation
in its specified performance do to various operational factors. L
In particular, for P = 0, the expression for P(Si|E) is the
same for the two negative inforwation procedures if P(C|S;) is
determined in the same way for both cases. In the view just
expressed, this implies that the first procedure applies to a 1
search ir which a detection system is operated so that it
achieves its specified performance. In the case of the positive [
information procedure, if p = 1, then the expression for P(£;[C)
is the same as that which can be obtained from
(33)  P(sjlc) = p(clsy) -P(S;)/P(C) L
where P(C) = T P(Clsj)-P(Sj) and the sum index 3 = 1,2, ++* ,n

if P(c|Sj) is determined in the same way for both cases.
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XV. Search Models and Search Theory

Search theory provides a basis for determining optimal
search plans for a target whose motion and location are
determined within some bounds. Here, an optimal search plan is
one for which the probability of finding a target within a given
length of time is a maximum, the expected time to find a target
is a minimum given the target is found or a search plan for which
some other optimal search criterion is satisfied.

Search theory results are based on models of the search
process. To the degree that a search model describes a search
process, an optimal search plan for a target that is based on the
search model should provide guidance for the development of an
operationally feasible search plan. However, because of the
limitations of analytical search models, an optimal search plan
that is based on an analytical search model may give only initial
guidance in this regard. The opiimal search plans that are
described below illustrate this. The scarch plans are based on
the random search model. BRecause of this, the requirement on the
location of search track segments is not realizable and the time
to resolve false alarms is ignored.

Optimal search plans based on se models implemented
through a monte carlo simulation are not considered here.
However, with sufficient information, such plans nave the
potential of being both implementable and more optimal in a real
sense than an optimal search plan based on an analytical search

model.
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Three Optimal Search Plans: The three optimal search plans
differ through their definition of optimality. However, each one
is based on the following search model: A target is fixed at
some point in a region that consists of n subregions. A search
in a subregion is a random search in the sense of the definition
in Section X and a searchers sweep width there is a constant.
In addition, a search of a subregion will not detect a target
which is in another subregion. To determine a plan, let
S; = {the target is in subregion i) for i =1,2, *++- ,n and
let pj = P(Sj) be the prior probability that the target is in
the ith subregion. Let Wi be the sweep width in the ith
subregion. Let §; = Aj/W; where A; is the area of the ith
subregion and &j 1is the expected track lerngth to find the
target by a search of the ith subregion given the target is in
the ith subregion, a characteristic length. The probability P
that the target will be detected by a random search is given by:
(34) P=3% (1 - exp{-13/84)1°pP4
where the sum index i = 1,2, *++ ,n and 1j is the track
length of the search in the ith subregion.

The first optimality criterion is: Choose 13 so that P
is a maximum subject to the two constraints: 1. 1 = £ 1§ and

2. 1

N

0 where the index i = 1,2, -+« ,n. Determining this
choice is a nonlinear cptimization problem whose solution is
given in Reference 20. - It is:

11/85

13/8;

e
It

1n(pj/8;) - L(k)

0 i

1’2’ see k
(35)

]
[l

kK+1,k+2, +++ ,n
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where L(k) = (1/26j)-2[8j-1n(pj/6j)] + 1/28j and the sum index
j =12,2, - ,k, where the subregions are relabeled so that the
following order relation holds: p;3/8; > py/8y > **+ > pp/§,, and
where k 1is chosen so that for Kk+1 the solution for 1y4;
using L(k+1l) is either negative or zero.

The second optimality criterion is: Choose 1; so that P
is a maximum subject to the two constraints: 1. ¢ =% c¢j and
2. ¢4 2 0 where the index i =1,2, *+* ,n, ¢j = kj*1; is the
cost of the search in the ith subregion and x; is the cost per
unit track length in that subregion. For this criterion, the
solutior. to the corresponding nonlinear cptimization problem can
be obtained from Equation 35 by replacing &; by €; = kj*8j
and labeling the subregions so that pj/€j > p3/€j > <** > pp/€i.
The basis for this can be seen by replacing 1j/6; by its
equivalent cj/€¢j in the exponential term in Equation 32.

The third optimality criterion is: Choose 1; so that the
expected utility of finding the target is a maximum subject to
the two constraints: 1. 1 =2 13 and 2. 13 2 0 where the
index i = 1,2, *+*+ ,n. For this criterion, the solution to the
corresponding nonlinear optimization problem can be obtained from
Equation 31 by replacing pj; by 4q; where gj = uj*pj and uj
is the utility of finding the target given it is in the ith
subregion. And, in addition, labeling the subregions sc that
q1/81 > 92/83 > **+ > dp/&p. The basis for this can be seen by

multiplying the summation term in Equation 34 by uj so that
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the resulting equation gives the expected utility of finding the
target with the search.

Eguation 35 can be used to determine an order of searcn for
the subregions which will effectively minimize the expected track
length required to detect a target given it is detected. To do
this, divide the available track length 1 intce units_small
enough s0o that with a single unit only the 1t subregion would be
searched. Then allocate one unit to the search of the 1St
subregion. If the seavrch is unsuccessful, determine the optimum
alloration for two units. Then search with a second unit so that
the first search with the first unit plus the second search with
the second unit satisfy the optimum allocation for two units. 1If
the search is unsuccessful, continue i1n this fashion until either
the target is found or all the track length is expended. That
this allocation order will effectively minimize the expected
track lenuth required tc detect a target given it is detected can
be argued as follows: Let L be the track length at detection,
let 1, be a unit of track length and let n b<¢ the number of
units., Then the value of the probability P(L £ i-ly,) that the
target will be detected on or before the ith step of the search
for the given allocation order will be greater than or equal to
its value for any other allocation order with the same allocation
step size. Since the value of P(L £ 1) will be equal to its
value for any other allocation order of the optimum allocation
and since P(L < i-1,iL £ 1) = P(L € i+1y)/P(L £ 1), the value of

the distribution fuaction Fy(i-1l,]JL € 1) = F(L < i-1,lL < 1)
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will be greater than »r equal to its value for any other
allocation order. This implies that the expected track length
given detection E(L|L € 1) = ¥ [1 = Fp(i-lylL £ 1)] where the
sum index i = 1,2, *+¢ ,1n1 1is effectively a minimum for the
given allocation order. A search based on the optimum allocation
given by Equation 35 and the given allocation order is
eguivalent to the following search: After an allecation of track
length I;; and an unsuccessful search, new values for P(Sj) are
calculated using Equation 29 and then Equation 35 is used with
these new values to determine the next optimum allocation. A
discussion of this procedure is given in Reference 6. And an
example of its application is given in Reference 21.

Equation 35 also defines an optimal search plan for a
detection system that searches beams and can be described by
Equation 33 Dby replacing 1§ by tj where tj is the time the
ith  beam is searched and by replacing &; by 1; where 1, a
characteristic time, is the expected time to detect the target by
a search of the itP peanm given the target is in the ith peam.

For a more extensive discussion of search theory and its

application to military operations research, see Reference 22.
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